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Abstract
We construct lattice parafermions—local products of order and disorder
operators—in nearest-neighbor ZN models on regular isotropic planar lattices
and show that they are discretely holomorphic, that is they satisfy discrete
Cauchy–Riemann equations, precisely at the critical Fateev–Zamolodchikov
(FZ) integrable points. We generalize our analysis to models with anisotropic
interactions, showing that, as long as the lattice is correctly embedded in the
plane, such discretely holomorphic parafermions exist for particular values of
the couplings which we identify as the anisotropic FZ points. These results
extend to more general inhomogeneous lattice models as long as the covering
lattice admits a rhombic embedding in the plane.

PACS numbers: 05.50.+q, 11.25.Hf

1. Introduction

ZN models, as the simplest statistical mechanics models with discrete global symmetries,
have been studied for many years. They are interesting, both as lattice models and in the
continuum limit as quantum field theories, because they exhibit semi-locality properties, such
as fractional spin [1], which arise in various other domains of physics. The simplest examples
of these models are the well-known Ising model (N = 2), three-state Potts model (N = 3)

and Ashkin–Teller model (N = 4), all exactly solvable to some extent. The phase diagram
of the nearest-neighbor ZN model in two dimensions for N = 5, 6, 7 was elucidated in
[2, 3], but in the general case it is still not known. Although these lattice models for N > 4
have complicated phase diagrams with several critical surfaces, Fateev and Zamolodchikov
[4] showed that there are some points (hereinafter referred to as FZ points) in the critical
surface at which these models are solvable, in the sense that they satisfy generalized star-
triangle relations. Moreover, there is strong evidence that the scaling limit at these points
corresponds to Zamolodchikov and Fateev’s parafermionic conformal field theory [5]. In this
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paper, we give further evidence for this connection. In particular we find lattice candidates
for the holomorphic parafermions of the continuum model and show that these satisfy a
discrete version of the Cauchy–Riemann equations. We also extend this result to models with
anisotropic interactions. We show that as long as the lattice is correctly embedded in the plane,
we can again construct discretely holomorphic parafermions. We may use this to conjecture
the location of the FZ critical surface of these anisotropic ZN lattice models. In fact, our
methods can be extended to any non-uniform lattice of the Baxter type [6], thanks to a result
of Kenyon and Schlenker [7] about embedding such lattices in the plane.

Identifying discretely holomorphic objects in lattice models is an important step in
showing that the scaling limit of suitably defined curves in these models is described by
Schramm–Loewner evolution (SLE) [8, 9]. Suitable candidates for SLE curves in ZN models
have been suggested by Santachiara [10] (see also Gamsa and Cardy [11] for the case N = 3).
We expect that our results will be the first step in showing that this is indeed the case.

This paper is organized as follows. In the second section we briefly review some related
properties of ZN models and the corresponding parafermionic conformal field theories. We
define the disorder variables on the isotropic square lattice, similarly to the case of the ZN

clock models [1] and the Potts model [12]. We then define lattice parafermions as products of
neighboring order and disorder variables, with a suitable phase factor. Using the Boltzmann
weights of the model at the FZ point, we then show that there are local linear relations between
parafermions, which are equivalent to discrete holomorphicity. This is our first main result.

In section 3, we consider lattices with anisotropic interactions and show that there are
special points, which we identify with anisotropic FZ points, at which there is a certain
embedding of the lattice on the plane for which discrete holomorphicity is again recovered.
We further extend this to the case of Baxter lattices [6], where we show that the existence
of a rhombic embedding [7] for such lattices allows us simply to generalize our results. It
should be mentioned that the importance of rhombic embeddings (and the related isoradial
embeddings) was central to the work of Duffin [13], Mercat [14] and Bobenko et al [15] in the
general theory of discrete holomorphy. Similar ideas have been used in other lattice models
by Kenyon [16] and Bazhanov et al [17].

2. Holomorphic parafermions in ZN model

The general ZN model on an arbitrary graph can be defined by associating with every node
of the graph a variable sr which takes values in the set ωq, q = 0, 1, . . . , N − 1, where
ω = e2π i/N . Each configuration occurs with probability

Z−1
∏

(rr ′)

W(r, r ′), (1)

where the product is over all the edges (rr ′) of the graph and Z is the partition function. The
weights W(r, r ′) take the general form

W(r, r ′) =
N−1∑

k=0

x
(rr ′)
k (sr s

∗
r ′)

k, (2)

where ∗ denotes complex conjugation. Assuming x
(rr ′)
0 �= 0, we can always set it equal to unity.

Reality of the weights implies that x
(rr ′)
k = x

(rr ′)
N−k , which means that one can describe them by

just [N/2] real parameters. The weights are invariant under the global group ZN, sr → ωksr ,
as well as charge conjugation C : sr → s∗

r .
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In what follows, except for the last section, we consider the graph to be a regular lattice,
with translationally invariant couplings x

(rr ′)
k , which may however depend on the lattice

orientation of the edge (rr ′).
For N = 2 and 3 it is easy to see that the model is equivalent to the Ising model and three

state Potts model respectively, whose critical points correspond to well-understood minimal
conformal field theories with c < 1. The higher values of N are related to more complicated
theories with rich phase diagrams [18]. Nearest-neighbor ZN models exhibit Kramers–Wannier
duality symmetry, which is important in understanding their phase diagrams. If all of xk with
k � 1 have the same value, we have the well-known N-state Potts model, which has a single
first-order transition for N > 4. In general, for N > 3 the theory has a critical surface on
which the exponents may vary continuously. It has been conjectured that there are n < 1

2N

points in the phase diagram which correspond to special kind of conformal field theories
called Fateev–Zamolodchikov (FZ) parafermionic models of the first kind [5]. This has been
verified by numerical simulations [18]. Our lattice holomorphic operators, described below,
are another evidence for this conjecture. These conformal field theories have the central charge

c = 2(N − 1)

N + 2
, (3)

the cases N = 2, 3 coinciding with the central charge of p = 2, 5 minimal CFTs.
Kramers–Wannier symmetry manifests itself in N − 1 order parameter fields σm and N − 1
dual disorder fields µm, which are conjectured to be the continuum version of the order
and disorder variables on the original lattice. Zamolodchikov and Fateev, using only the
ZN symmetry, showed that there also exist holomorphic operators (that is, operators whose
correlation functions are analytic functions except at coincident points) with the following
dimensions (equal to their conformal spin):

pm = m(N − m)

N
, m = 1, . . . , N − 1. (4)

We now give our construction of the lattice analogs of these objects. We first consider the
homogeneous isotropic ZN model on the square lattice.

In the first step let us define the disorder operators µr̃ on the sites of dual lattice, which,
in this case, is again another square lattice whose vertices are at the centers r̃ of the faces of
the original lattice. The insertion of a disorder operator µr̃m corresponds to modifying the
weights so that the order operator sr has monodromy sr → ω−msr on taking the point r in a
closed circuit around r̃ . This is equivalent to introducing a path, or string, on the sites of the
dual lattice from r̃ to infinity (or some other point on the boundary), such that the weights on
edges (rr ′) intersected by the string are modified by the substitution srs

∗
r ′ → srω

−ms∗
r ′ .

Thus, the disorder operator has the following form for the general ZN model:

µr̃m =
∏

(rr ′) intersected by string

∑N−1
k=0 xk(srω

−ms∗
r ′)k

∑N−1
k=0 xk(srs

∗
r ′)k

. (5)

It is not difficult to see that the disorder variables have the same C-symmetry similar to
the spin variables, µm = µN−m, and that, up to a gauge transformation, the definition (5) is
path independent.

Consider the square whose vertices are made by the two neighboring spin variables s1, s2

and the two neighboring disorder variables µ1̃, µ2̃ (figure 1). By taking the string from 1̃ to
run along the dual edge (1̃2̃), from (5) we can write the following relation:

µ1̃m =
∑N−1

k=0 xk(s1ω
−ms∗

2 )k

∑N−1
k=0 xk(s1s

∗
2 )k

µ2̃m. (6)
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s1µ
1
~

µ
2
~s2

Figure 1. An elementary square of the covering lattice (solid lines—rotated by 45◦ to correspond
to the conventions in the text). The opposite pairs of vertices are associated with order (s) and
disorder (µ) operators, respectively. The parafermions ψ are associated with the edges. Discrete
holomorphicity at the FZ points means that the contour sum of the parafermions around each face
vanishes. Also shown is part of the original square lattice (dashed lines) and the string (dotted line)
attached to the disorder operators.

We will need the exact value of xk at the FZ point, which for the isotropic square lattice have
the following compact form [4]:

xck =
k−1∏

j=0

sin
(

πj

N
+ π

4N

)

sin
(

π(j+1)

N
− π

4N

) . (7)

For clarity, let us first focus on the simplest case N = 2. By multiplying both side of (6)
by the denominator and then by multiplying the result by s1 we find the following equation:

s1µ1̃ + xcs2µ1̃ = s1µ2̃ − xcs2µ2̃. (8)

A similar equation can be found by exchanging s1 ↔ s2. By combining these two equations
(multiplying the second equation by −i and adding this to the first) one finds

−e
iπ
2 s1µ1̃ − i e− iπ

4 s2µ1̃ + s2µ2̃ + i e
iπ
4 s1µ2̃ = 0. (9)

Note that for this to happen it is crucial that we use the critical value xc1 = tan(π/8) = √
2−1.

(For the special case of the Ising model, when x �= xc, the right-hand side of (9) is proportional
to the antiholomorphic fermion [9].)

Equation (9) has the form of a discrete contour integral around each elementary square of
the covering lattice (the union of the dual lattice with the original lattice):

∑

e

ψeδze = 0 with ψrr̃ = e
−iθrr̃

2 srµr̃ , (10)

where θrr̃ is the angle that the directed segment rr̃ makes with the x-axes, with the convention
−π � θrr̃ < π . In this case these angles are just −π,−π

2 , 0, π
2 but in the following section

we will see more general cases. By changing i → −i one can find the similar equation for the
discrete antiholomorphic fermions. These two linear equations are a lattice discretized form
of the Cauchy–Riemann equations.

The calculation for N = 3 is very similar. Multiplying both sides of equation (6) by the
denominator, and then by s1, s

2
1s∗

2 and s2 we can find three linear equations in the six variables
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s1µ1̃,2̃, s
2
1s∗

2µ1̃,2̃, s2µ1̃,2̃. By eliminating s2
1s

∗
2µ1̃,2̃ one again finds a discretely holomorphic

equation of the form (10) with now

ψrr̃ = e
−2iθrr̃

3 srµr̃ . (11)

Once again, this works only at the FZ point given by (7).
The case N = 4 is very similar and we will discuss the results later. N = 5 is more

interesting. This model has two FZ points (x1, x2) = (xc1, xc2) and (xc2, xc1) corresponding
to the transformation sr → s2

r which exchanges x1 and x2. For this case equation (6) has the
following form:

µ1̃m(1 + xc1s1s
∗
2 + xc2(s1s

∗
2 )2 + xc2(s1s

∗
2 )3 + xc1(s1s

∗
2 )4)

= µ2̃m

(
1 + e− 2π im

5 xc1s1s
∗
2 + e− 4π im

5 xc2(s1s
∗
2 )2

+ e− 6π im
5 xc2(s1s

∗
2 )3 + e− 8π im

5 xc1(s1s
∗
2 )4). (12)

For the m = 1 case by multiplying the above equation by s1, s2, s
2
1s∗

2 , s3
1s∗2

2 , s4
1s∗3

2 one finds
the following equation

µ1̃1

(
s1 + xc1s

2
1s

∗
2 + xc2s

3
1s

∗2
2 + xc2s

4
1s

∗3
2 + xc1s

∗4
2

)

= µ2̃1

(
s1 + e− 2π i

5 xc1s
2
1s

∗
2 + e− 4π i

5 xc2s
3
1s

∗2
2

+ e− 6π i
5 xc2s

4
1s

∗3
2 + e− 8π i

5 xc1s2
)
, (13)

and four other equations by permuting the terms s1, s
2
1s∗

2 , s3
1s

∗2
2 , s4

1s∗3
2 , s2. The next step is to

eliminate the terms involving s2
1s

∗
2 , s3

1s∗2
2 , s4

1s∗3
2 from the above five equations. The calculation

is rather cumbersome, so we resorted to using Mathematica. The result is as follows: for m = 1
it is possible to eliminate the above terms only at the first FZ point (xc1, xc2), in which case
we obtain the holomorphic equation (10) with the holomorphic variable ψ1

rr̃ = e− 4iθrr̃
5 srµr̃1.

For m = 2 we first multiply equation (12) by s2
1 , s

3
1s∗

2 , s4
1s∗2

2 , s∗3
2 , s1s

∗4
2 to find

µ1̃2

(
s2

1 + xc1s
3
1s

∗
2 + xc2s

4
1s

∗2
2 + xc2s

∗3
2 + xc1s1s

∗4
2

)

= µ2̃2

(
s2

1 + e− 4π i
5 xc1s

3
1s

∗
2 + e− 8π i

5 xc2s
4
1s

∗2
2

+ e− 12π i
5 xc2s

∗3
2 + e− 16π i

5 xc1s1s
∗4
2

)
, (14)

and four other equations by permuting the different terms. Again we should eliminate the terms
involving variables s3

1s
∗
2 , s4

1s
∗2
2 , s1s

∗4
2 . In this case, we can find a holomorphic equation only

at the second FZ point (x1, x2) = (xc2, xc1) with the holomorphic variable ψ2
rr̃ = e

−6iθrr̃
5 s2

r µr̃2.
The calculation for m = 3 and m = 4 is similar and gives the antiholomorphic

parafermions.
The generalization to higher values of N is straightforward. By simplifying equation (6)

at the FZ points we conjecture that the following variables will be discretely holomorphic:

ψm
rr̃ = e−ipmθrr̃ sm

r µr̃m, (15)

for 1 � m � [N/2]. The same expression with the argument of the exponential having the
opposite sign is discretely antiholomorphic for [N/2] � m � N −1. (This is just the complex
conjugate of ψN−m

rr̃ .) We checked the conjecture for N = 6. In this case, we find all of
the holomorphic operators at the one FZ point (xc1, xc2, xc3). These discretely holomorphic
quantities are the candidates for the holomorphic parafermions of FZ parafermionic CFT in
the continuum limit. We should emphasize that these operators are holomorphic only at the
FZ points and not elsewhere on the critical self -dual surfaces. For example, for N = 4, ψ1

rr̃

is not holomorphic at the critical point of the four-state Potts model. However ψ2
rr̃ , which has

conformal spin 1, is holomorphic all the way along the critical line 2xc1 + xc2 = 1.
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s

µ

α

s1

2

µ
1
~

2
~

Figure 2. Embedding of the anisotropic square lattice (dashed lines) in the plane. The faces of the
covering lattice form rhombi with opening angles α (shown) and π − α.

We should also note another curious feature, which is most simply illustrated for the
Ising case. Although we have shown that the linear relation (9) implies the discrete
holomorphicity relation (10) for the parafermion ψrr̃ = e− iθrr̃

2 srµr̃ , if we define another
quantity ψ̂rr̃ ≡ e

3iθrr̃
2 srµr̃ , then (9) also implies that

∑
e ψ̂eδz

∗
e = 0, that is ψ̂rr̃ is discretely

antiholomorphic. This is quite general, and holds for other values of N and the more
general lattices discussed in the following section: if ψrr̃ is discretely holomorphic, then
ψ̂rr̃ = e2iθrr̃ ψrr̃ is discretely antiholomorphic.

3. ZN model on other lattices

In the previous section we found additional evidence that the Zamolodchikov–Fateev
parafermionic CFT is a good candidate for the continuum limit of the FZ point of ZN models
on the square lattice, by identifying discretely holomorphic parafermions on the lattice. Note
this construction was possible only at the FZ points. One may therefore try to invert the
argument and locate the FZ point by requiring discrete holomorphicity. Since, by universality,
the same conformal field theory should describe the continuum limit of suitable ZN models
on other lattices, one would expect to be able to identify discretely holomorphic objects in
this case, and thereby deduce the location of the FZ points. In fact we will show that this
is possible in many cases and that the critical weights of the models are just related to the
geometry of the covering lattice when it is suitably embedded in the plane. Note that the
notion of holomorphicity is not invariant under a general diffeomorphism of the plane, only
under conformal transformations. Therefore we expect that the identification of discretely
holomorphic objects will depend on choosing a particular embedding of the lattice into the
plane, modulo conformal mappings. In what follows we study this problem for the anisotropic
square, honeycomb and triangular lattices, and then the more general case of a ‘Baxter lattice’.

Let us first investigate the square lattice with unequal weights xx
k , x

y

k in the x- and
y-directions, respectively. In this case, it is clear that in order to maintain invariance under
lattice translations and reflection symmetry about the x- and y-axes the only transformations
allowed are relative scalings of the x- and y-coordinates [19]. In this case, each elementary
square of the covering lattice is deformed into a rhombus (figure 2).

Defining the parafermions by (15), we can try to demand that the discrete contour integral
around each elementary rhombus vanishs as before. As an example, we show the case of the
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Ising model in detail. Taking an arbitrary linear combination of (8) and its counterpart with
s1 ↔ s2 we have

a + x
y

1

ax
y

1 − 1
s1µ1̃ +

ax
y

1 + 1

ax
y

1 − 1
s2µ1̃ +

a − x
y

1

1 − ax
y

1

s1µ2̃ + s2µ2̃ = 0. (16)

On the other hand, for the rhombus in figure 2 the contour sum is

−ψ11̃ + e−i(π−α)ψ21̃ + ψ22̃ + eiαψ12̃ = 0 (17)

where ψ11̃ = eiπ/2s1µ1̃, ψ21̃ = e−iα/2s2µ1̃, ψ22̃ = s2µ2̃ and ψ12̃ = ei(π−α)/2s1µ2̃. Comparing
equations (16) and (17) we find that they are consistent only at a particular value of a and for
x

y

1 = tan(α/4). Similarly, we find that the contour sums around the rhombi aligned in the
other direction can vanish only if xx

1 = tan((π − α)/4).
Note that the comparison of (16), (17) implies three complex equations. If instead of

choosing the elementary face of the covering lattice to be a rhombus we take an arbitrary
quadrilateral with edges δze, where

∑4
e=1 δze = 0, this would introduce two further complex

unknowns (ratios of δze) into (17), besides the unknown a. Given x
y

1 , the three complex
equations therefore determine a and the shape of the quadrilateral. We have already shown
that a rhombus with a suitable opening angle satisfies all the equations. Therefore, one would
expect that they cannot be satisfied for any other quadrilateral with unequal edge lengths. This
can be checked explicitly.

For higher values of N we find that the contour sum around the rhombi vanishs as long as
the weights satisfy

x
y

k = xck(α) ≡
k−1∏

i=0

sin
(

πi
N

+ α
2N

)

sin
(

π(i+1)

N
− α

2N

) xx
k (α) = xck(π − α). (18)

The result agrees with that found by Fateev and Zamolodchikov [4] by imposing the star-
triangle relations.

Next we consider the isotropic honeycomb and triangular lattices, which are mutually
dual with the vertices of the honeycomb lattice at the centers of the faces of the triangular
lattice and vice versa. The elementary cells of the covering lattice give a regular rhombus
tiling of the plane, with α = 2π

3 for the honeycomb lattice and α = π
3 for the triangular lattice.

The mathematics then proceeds just as for the anisotropic square lattice above, with the result
that one can find discretely holomorphic parafermions as long as the weights satisfy (18) with
the appropriate values of α. This we then conjecture to correspond to the FZ point(s) for these
lattices.

A more interesting case is that of the homogeneous triangular lattice with unequal weights
x

(1)
k , x

(2)
k and x

(3)
k in the three lattice directions. In this case, the question of where to locate

the dual vertices is crucial. On the basis of the above observations, we adopt the following
construction. Consider a (proper) embedding of the regular triangular lattice into the plane by
some general linear transformation of the coordinates. This gives a regular tiling of the plane
by triangles. For each triangular face with ZN spins at the vertices, locate the dual vertex
at the circumcenter, that is the point at which the three perpendicular bisectors of the edges
meet, equidistant from the three vertices. This construction guarantees that adjacent pairs
of vertices and dual vertices always form a rhombus. Each triangle is associated with three
different rhombi with angles α1, α2 and α3 = π − α1 − α2, see figure 3. If now we choose the
weights so that

x1k = xck(α1), x2k = xck(α2), x3k = xck(π − α1 − α2), (19)

it follows from our general analysis that we then can identify discretely holomorphic
parafermions. Transforming back to the original regular triangular lattice with unequal
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xx 23

x1α1

α2

3

Figure 3. Embedding of one face of a regular anisotropic triangular lattice (dashed lines) in
the plane. The faces of the covering lattice are rhombi with opening angles α1, α2 and α3 =
π − α1 − α2.

weights, we therefore conjecture that (19) gives the general critical surface of the FZ point(s).
Note that it is possible for one of the αj to be negative, if the largest angle of the deformed
triangle is obtuse, corresponding to the interactions in one of the lattice directions being
(weakly) antiferromagnetic. (However these points are still on the ferromagnetic critical
surface, and have the Fateev–Zamolodchikov CFT [5] as their conjectured scaling limit.) On
transforming back to the regular lattice, the images of the dual vertices do not in general lie at
the centers of the triangular faces (in fact they may lie outside the face).

It is easy to check that these results are consistent with previously known results for the
N = 2 Ising model and N = 3 three states Potts model [6, 20].

The FZ critical points for the honeycomb lattice with anisotropic couplings follow directly
by duality from those of the triangular lattice, which corresponds to letting αj → π − αj

in (19).
We now indicate how our results extend to a more general kind of inhomogeneous lattice,

called a Z-invariant or Baxter lattice [6]. This is a planar graph L which is a union of M simple
(non-self-intersecting) curves crossing the complex plane from xj − i∞ to x ′

j + i∞, where
the values {xj } and {x ′

j } (1 � j � M) are distinct, and with the further property that a given
curve can intersect any of the others at most once (figure 4). The faces of L are 2-colorable,
and in general we can assume that its vertices are all of degree 4 (if not we deform the curves
slightly so this is true). Consider now the planar graph G whose vertices are associated with
each black face of L and whose edges E pass through the vertices of L. We can define a ZN

model on G with general weights x
(E)
k . The vertices of the dual lattice G∗ then correspond

to the white faces of L. The vertices of the covering graph C (the union of the vertices of G
and G∗) each correspond to a face of L, irrespective of color. Note that all of the faces of C
have degree 4. We are free to embed this lattice in the plane in any way we choose, just as
for the anisotropic triangular lattice earlier. However, a remarkable theorem due to Kenyon
and Schlenker [7] states that (in the case considered here, where the original curves do not
self-intersect and cross any other at most once) there is a rhombic embedding of C into the
plane, that is, one in which all the edges have equal length. Each rhombus corresponds to an
edge E of G and defines an opening angle αE . As before, we may define parafermions on the
edges of C and demand that they be discretely holomorphic when summed around the edges
of each rhombus. This will be the case if we choose xk(E) = xkc(αE), as given by (18). We
conjecture that these values give the location of the FZ points on this inhomogeneous model.
The rhombic embedding specifies how this model should be embedded in the plane in order
that its scaling limit be given by the FZ conformal field theory.

Finally, we discuss how the conditions that allow the Yang–Baxter (star-triangle) relations
in these models are compatible with discrete holomorphicity. Consider part of a latticeLwhere
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Figure 4. Part of a Baxter lattice. The faces of the graph L formed by the curved lines are
2-colorable (not shown). Order variables s and disorder variables µ are associated with alternately
colored faces, respectively. The covering lattice is shown as solid lines. The theorem of Kenyon
and Schlenker [7] asserts that for every such graph the covering lattice admits a rhombic embedding
in the plane, that is one where all its edges have the same length.

s s

s s

ss

s

Figure 5. Two different tilings of a hexagon by the same set of three rhombi. The right-
hand case has, in the graph G, an additional vertex associated with an order operator s as
compared to that on the right. Discrete holomorphicity for each rhombus fixes the couplings
on the dashed lines to be related by the star-triangle transformation. The two pictures are also
related in the original graph L by moving one of the curves past the vertex formed by the other
two—the Yang–Baxter relation.

three lines meet at a point. This can be resolved in two different ways (see figure 5). The
Yang–Baxter relations guarantee that the Boltzmann weights, keeping all the other lines fixed,
are independent of how this is done. If we 2-color the faces of L, it can be seen that the second
resolution adds one more black face, that is one more vertex of G. The invariance under this
is the star-triangle relation.

The rhombic embeddings in the two cases are shown in figure 5. It can be seen that in
both cases the three rhombuses fit together to form a hexagon with opposite sides parallel and
that they simply correspond to two different tilings of the hexagon by the same three rhombi.
The condition that the contour sum of the parafermions around each rhombus should vanish
implies that the couplings should satisfy x̃k = xkc(π − α), which are the critical star-triangle
relations.
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4. Conclusion and discussion

In this paper, we considered the nearest-neighbor ZN model on some fairly general lattices. We
identified the dual disorder operators and used these to define parafermionic operators which
reside on the edges of the covering lattice. For the isotropic square, triangular and honeycomb
lattices we showed that, at the Fateev–Zamolodchikov critical points, these parafermions obey
the discrete version of the Cauchy–Riemann relations, that is their contour sum around each
elementary face of the covering lattice vanishes. We then extended this idea to regular lattices
with anisotropic couplings and showed that, if they are correctly embedded in the plane, it is
possible once again to identify discretely holomorphic parafermions at particular values of the
couplings. These we conjecture to correspond to the FZ points on these anisotropic lattice,
which agrees with previously known cases.

A crucial feature of these embeddings is that the faces of the covering lattice should be
rhombi. This enabled us to extend our results to more general inhomogeneous lattices of the
Baxter type, thanks to a theorem [7] which guarantees the existence of a rhombic embedding in
such cases. In this picture, the relation between discrete holomorphicity and the Yang–Baxter,
or star-triangle, relations becomes particularly clear.

We expect that the discretely holomorphic lattice parafermions become the holomorphic
parafermions of the conformal field theory, but this requires further assumptions. As pointed
out in [8, 9], if we regard the discrete Cauchy–Riemann equations as a linear system, there are
in general twice as many unknowns as equations (only in the Ising case, when the phases of
the parafermions are not free, there are the correct numbers). Morera’s theorem, which allows
one to deduce that a function f defined on R

2 is analytic if its contour integral around every
closed contour vanishes, applies only if f is also assumed to be continuous. If we could prove
that all correlators of our discrete parafermions become continuous functions in the scaling
limit, this would be sufficient to show complex analyticity, at least with sufficiently smooth
boundaries. However this step is highly non-trivial, as evidenced by the ambiguity in the
interpretation of the linear relations discussed at the end of section 2. There we showed that
they lead to the identification of discrete parafermions ψrr̃ and also ψ̂rr̃ = e2iθrr̃ ψrr̃ . If they
corresponded to conformal fields in the scaling limit, they would have conformal spins pm and
pm − 2. However, if the correlators of ψ become continuous functions in the scaling limit,
this cannot be true of those of ψ̂ and vice versa.

If this problem can be overcome, we believe that our identification of suitable discretely
holomorphic quantities should be the first step in showing that suitable defined curves in
the ZN have SLE as their scaling limit, as has been recently conjectured [10, 11]. In order
to do this, following the ideas of Smirnov [8], however, it is necessary to identify these
quantities with observables of these curves which are martingales of some discrete exploration
process. Since the domain walls (or, equivalently, high-temperature graphs) of the ZN model
do not correspond directly to simple lattice curves (except for N = 2), there are a number of
difficulties yet to be overcome in this program.
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